If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-17=8k
We move all terms to the left:
k^2-17-(8k)=0
a = 1; b = -8; c = -17;
Δ = b2-4ac
Δ = -82-4·1·(-17)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{33}}{2*1}=\frac{8-2\sqrt{33}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{33}}{2*1}=\frac{8+2\sqrt{33}}{2} $
| 7x-7+6x+4=90 | | 1/7b-6=3/7+4 | | 4(2x-3=4(x-2) | | c+-11=1 | | 3/5a-5=7 | | 6x-9+69=13x-7 | | 41=5-9x | | (2x+1)=9 | | -22-5m=-(7+8m) | | 15x=-5x-20 | | 6p+4=p-11 | | h3=2h-6 | | 6(x-7)+22=5x-2 | | 2(9x-59)=34-x | | 1/3x+3/4=-6 | | -1=p-17 | | -4=-a+8=2a | | 3.5+6=5x | | 3.2x+2=2x+20 | | 12x+4=48x+76 | | m/14=20 | | 21=-10m-5 | | 4(2x+3)=16x+3−8x+9. | | -2(45x)=52 | | -6+8x=10x-20 | | x-4=-12+3 | | 20(20–x)=300 | | 3x+1=12x+19 | | -21+p=792 | | 2(75-10x)=x+3 | | x/35-1/5=15 | | -6+5x=3+4(4x-5) |